Anne Dattilo, August 2023
Code to re-create Figure 4 from Dattilo et. al (2023)
Download the data to recreate the figure at https://zenodo.org/records/8206797
# import all the libraries
import numpy as np
import pandas as pd
from astropy.io import fits
import matplotlib.pyplot as plt
from scipy.interpolate import RectBivariateSpline
import sys
import matplotlib
First, we set up the parameter space we are plotting in. These are larger than what we plot to match the region computed in our specific completeness contour.
x = np.linspace(np.log10(1), np.log10(500), num=1000)
y = np.linspace(np.log10(0.4), np.log10(22), num=1000)
xg, yg = np.meshgrid(x, y, indexing='ij')
# small grid for plotting
mr = np.logspace(np.log10(0.5), np.log10(16), num=10)
mp = np.logspace(np.log10(1.), np.log10(400), num=9)
mp_grid, mr_grid = np.meshgrid(mp, mr, indexing='ij')
mp_c = 0.5*(mp[1:] + mp[:-1])
mr_c = 0.5*(mr[1:] + mr[:-1])
# for later (:
def kde_anywhere(Z, pmin, pmax, rmin, rmax):
pmask = (np.where((x >= np.log10(pmin)) & (x <= np.log10(pmax)))[0][0],
np.where((x >= np.log10(pmin)) & (x <= np.log10(pmax)))[0][-1])
rmask = (np.where((y >= np.log10(rmin)) & (y <= np.log10(rmax)))[0][0],
np.where((y >= np.log10(rmin)) & (y <= np.log10(rmax)))[0][-1])
return(Z[pmask[0]:pmask[1]+1, rmask[0]:rmask[1]+1])
inputgrid_FGK = "out0819_FGK_slog_insol__.fits.gz"
hdulist = fits.open(inputgrid_FGK)
cumulative_array = hdulist[0].data
kiclist_FGK = np.asarray(hdulist[1].data, dtype=np.int32)
probtot_FGK = np.transpose(cumulative_array[1])
probdet_FGK = np.transpose(cumulative_array[0])
prihdr = hdulist[0].header
min_comp_period = prihdr["MINPER"]
max_comp_period = prihdr["MAXPER"]
n_comp_period = prihdr["NPER"]
min_comp_rp = prihdr["MINRP"]
max_comp_rp = prihdr["MAXRP"]
n_comp_rp = prihdr["NRP"]
# set up grid that the contour was calculated on
period_want = np.linspace(min_comp_period, max_comp_period, n_comp_period)
rp_want = np.linspace(min_comp_rp, max_comp_rp, n_comp_rp)
period_want2d, rp_want2d = np.meshgrid(period_want, rp_want)
# interpolate that shit
numCompVeInterp = RectBivariateSpline(period_want, rp_want, probtot_FGK)
sC_fine_FGK = numCompVeInterp(10**x, 10**y)
sC_fine_FGK[sC_fine_FGK < 0] = 0.0
# set low-completeness limits
limit = np.array([10., 50., 100.])
xl = np.linspace(1.0, 500., num=2000)
yl = np.linspace(0.1, 22., num=2000)
xlg, ylg = np.meshgrid(xl, yl, indexing='ij')
cs = plt.contour(xlg, ylg, probtot_FGK/kiclist_FGK.size, levels=limit/kiclist_FGK.size, colors='k')
xlim_FGK = cs.collections[1].get_paths()[0].vertices[:, 0]
ylim_FGK = cs.collections[1].get_paths()[0].vertices[:, 1]
plt.close()
In order to remove empty cells we have to load in the planet sample and make a 2D histogram
pcCatalog_FGK = "dr25_FGK_PCs_B20_ruwe.csv"
# load in planet candidates
base_kois = pd.read_csv(pcCatalog_FGK)
m = (1 <= base_kois.koi_period) & (base_kois.koi_period <= 500)
m &= np.isfinite(base_kois.corrected_prad) & (0.4 <= base_kois.corrected_prad) & (base_kois.corrected_prad <= 22)
kois_FGK = pd.DataFrame(base_kois[m])
# create 2D histogram
H_FGK, xedges, yedges = np.histogram2d(kois_FGK.koi_period, kois_FGK.corrected_prad, bins=(mp, mr))
H_nan_FGK = H_FGK * 1
H_nan_FGK[H_nan_FGK < 1] = np.nan
# this sets up where the low completeness limit is
H_lim_FGK = np.zeros(H_FGK.shape)
for i in range(len(xedges)-1):
for j in range(len(yedges)-1):
H_lim_FGK[i, j] = ylim_FGK[np.where(xlim_FGK <= xedges[i])][0] > yedges[j]
Next we load in the observed KDE and bin down to the pre-set bins
boot_kde_FGK, boot_kde_err_FGK = np.load("out0827_FGK_sboot_1000__avg.npy")
boot_kde_smol_FGK = np.zeros((len(mp)-1, len(mr)-1))
boot_kde_smol_err_FGK = np.zeros((len(mp)-1, len(mr)-1))
# go forth and propagate
for i in range(len(mp)-1):
for j in range(len(mr)-1):
z = kde_anywhere(boot_kde_FGK[0]/sC_fine_FGK, mp[i], mp[i+1], mr[j], mr[j+1])
boot_kde_smol_FGK[i, j] = np.sum(z)*(np.diff(x)[0]*np.diff(y)[0])
z_e = np.sum(kde_anywhere(boot_kde_err_FGK[0], mp[i], mp[i+1], mr[j], mr[j+1]))/np.sum(
kde_anywhere(boot_kde_FGK[0], mp[i], mp[i+1], mr[j], mr[j+1]))
boot_kde_smol_err_FGK[i, j] = np.sqrt(z_e**2)*boot_kde_smol_FGK[i, j]
# we don't want to plot cells that had no planet detections !
boot_kde_smol_FGK_nan = boot_kde_smol_FGK.copy()
boot_kde_smol_FGK_nan[H_FGK < 1] = np.nan
boot_kde_smol_FGK_nan[H_lim_FGK >= 1] = np.nan
/var/folders/rv/9p1pr5rn5kj6dw0jxf0zfsxm0000gn/T/ipykernel_15163/1566659179.py:9: RuntimeWarning: divide by zero encountered in true_divide z = kde_anywhere(boot_kde_FGK[0]/sC_fine_FGK, mp[i], mp[i+1], mr[j], mr[j+1])
# make a nice plot!
fig, ax = plt.subplots(num=4, figsize=(12, 7))
hatch = plt.fill_between([np.log10(1),np.log10(400)],
np.log10(0.5), np.log10(16), color="lightgray")
im = ax.pcolormesh(np.log10(mp_grid), np.log10(mr_grid), boot_kde_smol_FGK_nan*100,
cmap='magma', norm=matplotlib.colors.LogNorm(vmin=1e-2, vmax=15), shading='flat',
edgecolor='white', linewidth=0.5)
for i in range(len(yedges)-1):
for j in range(len(xedges)-1):
if boot_kde_smol_FGK.T[i,j]*100>=10:
o = '%.3f' % (boot_kde_smol_FGK*100).T[i,j]
e = '%.2f' % (boot_kde_smol_err_FGK*100).T[i,j]
t = o + "\n± " + e
else:
o = '%.4f' % (boot_kde_smol_FGK*100).T[i,j]
e = '%.3f' % (boot_kde_smol_err_FGK*100).T[i,j]
t = o + "\n± " + e
if np.isnan(H_nan_FGK.T[i,j]):
o = '%.3f' %((boot_kde_smol_FGK*100).T[i,j]+(boot_kde_smol_err_FGK*100).T[i,j])
ax.text(np.log10(mp_c[j])-0.03, np.log10(mr_c[i]), "< "+str(o),
color="k", ha="center", va="center", fontsize=14)
elif H_lim_FGK.T[i,j]:
o = '%.3f' %((boot_kde_smol_FGK*100).T[i,j]+(boot_kde_smol_err_FGK*100).T[i,j])
ax.text(np.log10(mp_c[j])-0.03, np.log10(mr_c[i]), "< "+str(o),
color="k", ha="center", va="center", fontsize=14)
elif boot_kde_smol_FGK.T[i,j]>=0.045:
ax.text(np.log10(mp_c[j])-0.03, np.log10(mr_c[i]), t,
color="k", ha="center", va="center", fontsize=14)
else:
ax.text(np.log10(mp_c[j])-0.03, np.log10(mr_c[i]), t,
color="white", ha="center", va="center", fontsize=14)
ax.tick_params(axis='both', labelsize='large')
cb = plt.colorbar(im)
cb.set_label(label="Number of planets per 100 stars", fontsize=18)
plt.xlim(np.log10(1.), np.log10(400.))
plt.ylim(np.log10(0.5), np.log10(16.))
plt.xlabel("Period (days)", fontsize=18)
plt.ylabel(r"Radius (R$_\oplus$)", fontsize=18)
plt.xticks(np.log10(mp), labels=[1.0, 2.11, 4.47, 9.46, 20.0, 42.29, 89.44 ,189.15, 400.0])
plt.yticks(np.log10(mr), labels=[ 0.5, 0.73, 1.08, 1.59, 2.33, 3.43, 5.04, 7.41, 10.89, 16.0])
plt.minorticks_off()
plt.tight_layout()
plt.show()
# nice, isn't it